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Linear Differential Equations of Second and Higher order

n y d n 1y dy
A differential equation of the form +R F e +Pa—+PF,=0Q(X)...... (1)iscalledasa
dx" dx" dx
linear differential equation of order n with constants coefficients. Where B, P;.......... P, are real
constants.
2 n
+ iED,d—EDZ, ......... d—EDn
dx  dx? dx"

4+ Equation (1) is also written as f (D)y =Q(x), where f (D)=D" + BD" ! +.....+ P, ;D + P,

“+ The EENSEMSOIIABH of the above equation isy = C.F .+ P.l.or ¥ =ye+Yy,
C.F. = complementary function & P.I. = Particular Integral or function

An equation of the form f (m) =0 (this we will get by replacing D by min f(D) )isa
polynomial equation, by solving this we get roots my,m,,....... mp, .

Complementary Function
The general solution of f(D)y =0 is called as Complementary function and is denoted by y.and it
depends upon the nature of roots of f(m)=0.

*

*
*
*

_ i.e. atf then y, =e** (ol COS X +Cy Sin ﬁx) for repeated

complex roots same procedure will be applied as of equal roots.

+ _i.e. m=a+.B,y, =e** (qcosh\/ﬁx+czsinh\//_?x)

+ If repeated roots of surds say

m=a+.\B,a+ B =y, =e* [(cl +cyx)cosh \[Bx +(c3 +c4)sinh\/,§x]



Particular Integral

The evaluation of
f(D)

Methods to find Particular Integral

Q(x) is called as Particular Integral and it is denoted by y, i.e. Yp =

1
f(D)

Q(x)

Method 1: P.IL. of f(D)y=Q(x) where Q(x)=¢® where a is constant

In this case
Yo =™ oy oL Xt £y
P f(D) P f(a)
. 1
if f(aQ)=0 theny,=e®*——
@ Yp f(D +a)

Method 2: P.I. of f(D)y=0Q(x) where Q(x)=sinaxorcosax,a is constant

1 .
> Sinaxor cosax

Step - | replace D? by—a2 in f(D)if f(—az) =0 then Yp =
f(-a%)

2\ _1 . 1 .
If f(-a®)=0theny, = 5 Ismaxdx or 5 Icosaxdx respectively

Method 3: P.I. of f(D)y=Q(x) where Q(x)=x¥,k ez *is constant

In this case y,, =[f(D)]_1 xK expand [f(D)]_1 by the binomial theorem in ascending powers D as for

k

as operation on X" is zero.

Expanding this relation upto k™ derivative by using Binomial expansion and hence get Yp -

Important Formulae:

1. (1-D) "=1+D+D?+...

2. (1+D) '=1-D+D?*-...




Method 4: P.I. of f(D)y=Q(x) where Q(x)=e® V whereV is functionof xand a is

constant
In this case
1
ARNTG)
ax 1
= —V
Yp f(D+a)

Now we will proceed further according to nature of V.

Method 5: P.I. of f(D)y=0Q(x) where

Q(x)=x K where vis any functionof x (i.e.sinaxor cosax)wherek e Z*and a 1s constant

We know that y,, =kav ,Case — | Let k=1theny, = x——f D) 1 v
f(D) f(D) | f(D)

Now forthe- k 1&V =sinaxor cosax we will use '’ =cos@ +isin@ where
R.P.cos@&I1.P.sin@

K o k
= X" sinax = X" COS ax
SANTG) ST
1 k iax 1 k iax
= X" 1.P.[e = X"R.P.{e
Yp f (D) ( ) Yp f (D) ( )
i 1 - 1
= Pe®* = K =RPe® = K
Yp f(D +ia) Yp f(D +ia)
By using previous methods we will solve further. By using previous methods we will solve further.




General Method: P.1. of f(D)y=Q(x) where Q(x) is function of x.

In this case if f (D) =(D —a) then y,, = ﬁQ(x) —e aXJ'e ~Q(x)dx

Similarly f(D) =D + athen vy, :DLMQ(X) =e_axfeaXQ(x)dx

This method is used for the problems of the following type
+ (D2—3D+2)y:sin(e_x)
+ (D2+a2)y=secax
+ (D2+a2)y=tanax
‘|

D? +a2)y:cosecax

Cauchy’s Linear Equations (or) Homogenous Linear Equations
A differential equation of the form [x” D" + AX" D" 4+ L+ A XD+ A, } y =Q(x) is called n"

order Cauchy’s Linear Equation in terms of dependent variable y and independent variable x, where

AL PAy,...... A, are real constants.

Substitute x=e* =logx=z and xD =0,x°D? =0(0-1)...... &6’=di . then above relation becomes
z

f(6)y=Q(z) which is linear D.E. with constant coefficients, by using previous methods, we can find

complementary function and particular integral of it, and hence by replacing Z=log X we get the required
General Solution of Cauchy’s Linear Equation.

Legendre’s Linear equation
An differential of the form [(ax +b)" D" + A (ax+b)" D"t 4.+ A (ax+b) D+ A, } y=Q(x)

is called Legendre’s linear equation of order n, where a,b, A, A, ........ A, are real constants.

Now substitute (ax+b)=e” = z=Ilog(ax+b) and

(ax+b)D=ad, (ax + b)2 D? = a249(0 =D.....&0= di , then above relation becomes f(8)y =Q(z)
z

which is linear D.E. with constant coefficients, by using previous methods, we can find complementary
function and particular integral of it, and hence by replacing z = log (ax + b) we get the required General
Solution of Legendre’s Linear Equation.



Method of Variation of Parameters

. . d?y dy
To find the general solution of ——+ P —=+Q y=R(X).......(1)

d)(2 dx

Let the complementary function of the above equation is y. =cqu +cC,Vv

Let Particular Integral y, = Au+Bv , where

A=[—R o & B=[ R g
uv —uv uv —uv



